Biomaterials and Prosthetic Testing
Testing, Analysis and Inspection of Biomaterials and Prosthetics
Shimadzu offers a complete range of instrumentation to support advancements in the field of biomaterials and new medical treatments, including regenerative tissue implants, orthopedics, drug delivery, and medical devices. Mechanical test equipment such as universal test machines and fatigue testers enable the evaluation of the biomechanical and physical properties of biological samples, tissue, biomaterials, elastomers, polymers, metals, and shape memory alloys. They can also be used to study the suitability and reliability of medical devices and packaging designs. Our advanced x-ray imaging systems can be used for the inspection of animal specimens and tissue used in experimental research, and our particle size analysis and life science instrumentation offer innovative solutions for the analysis of biological
Featured Applications
Physical Property Testing Equipment for Biomaterials and Medical Applications
To guarantee the safety and efficacy of medical equipment and technologies in the wake of medical breakthroughs, more active efforts are being made to reinforce the evaluation criteria and the regulations governing the standardization of measuring instruments and test methods. Medical equipment manufacturers and research organizations around the world are conducting research and development into medical equipment based on mechanical properties evaluation and finite-element analysis. Shimadzu Corporation is applying the technical expertise cultivated through physical testing, quality control, and full-scale testing in materials development to the fields of leading-edge medicine and biomaterials evaluation.
Aggregation Analysis System for Biopharmaceuticals
The Aggregates Sizer aggregation analysis system enables the quantitative evaluation of particle amounts in the 0.1 μm to 10 μm range as a concentration (units: μg/mL or particles/mL). Aggregations of biopharmaceuticals can be categorized into 4 ranges: nanometer (<100 nm), submicrometer (100 nm to 1 μm), subvisible (1 to 100 μm), and visible (>100 μm), according to their particle size. Until now, particles in the submicrometer to subvisible portion of this range (100 nm to 10 μm) were generally measured by combining multiple methods.